Purpose
Compare MINST NN with CIFAR10 NN with Caltech101
Conclusion
CNN Layer channnel number is important.
Results
Preparation
Setup tensorflow-pi:
$ cd
$ git clone https://github.com/karaage0703/tensorflow-pi
$ cd tensorflow-pi/data
$ ./getCaltech101.sh
$ python make_train_data.py 101_ObjectCategories
Clone this repository:
$ cd
$ git clone https://github.com/karaage0703/tensorflow-experiment
Like MNIST NN
Using cnn_mnist.py
for NN
$ cp ~/tensorflow-experiment/20170815_experiment/cnn_mnist.py ~/tensorflow-pi/cnn.py
Train:
$ cd ~/tensorflow-pi/
$ python train.py
step 0, training accuracy 0.0508475, loss nan
step 1, training accuracy 0.0508475, loss nan
MNIST base NN using CIFAR10 CNN Layer
Using cnn_cifar10_01.py
for NN
$ cp ~/tensorflow-experiment/20170815_experiment/cnn_cifar10_01.py ~/tensorflow-pi/cnn.py
Train:
$ cd ~/tensorflow-pi/
$ python train.py
elapsed_time:7920.29748917[sec]
test accuracy 0.429719
MNIST base NN using CIFAR10 CNN Layer and Pooling Layer
Using cnn_cifar10_02.py
for NN
$ cp ~/tensorflow-experiment/20170815_experiment/cnn_cifar10_01.py ~/tensorflow-pi/cnn.py
Train:
$ cd ~/tensorflow-pi/
$ python train.py
elapsed_time:9575.28440309[sec]
test accuracy 0.432842